step-by-step guide starting from installing Python, TensorFlow, and CUDA on Windows:
Step 1: Install PythonDownload Python:
Go to the Python Downloads Page.
Download Python 3.10 or 3.11 (compatible with TensorFlow and CUDA). python 3.13 is not compatible check documentation
Install Python:
Run the installer.
Select Add Python to PATH during installation.
Use the Customize installation option to include all features.
Verify Python Installation:
Open Command Prompt and type:bashCopy codepython --version
pip --version
Step 2: Create a Virtual EnvironmentSet Up a Virtual Environment:
Open Command Prompt and run:type:python -m venv tensorflow_env
Activate the environment:tensorflow_env\Scripts\activate
Upgrade pip:
Inside the virtual environment, upgrade pip:pip install --upgrade pip
Step 3: Install TensorFlowInstall TensorFlow with GPU Support:
Inside the virtual environment, install TensorFlow:pip install tensorflow
Verify TensorFlow Installation:
Check if TensorFlow is installed and GPU support is available:python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
If no GPUs are listed, proceed to the next step to install CUDA.
Step 4: Install CUDA ToolkitFind the Required CUDA Version:
Visit the TensorFlow GPU Support Page.
Find the compatible CUDA version for your TensorFlow version (e.g., TensorFlow 2.12 requires CUDA 11.8).
Download CUDA Toolkit:
Go to NVIDIA CUDA Toolkit Downloads.
Select your OS (Windows) and download the required CUDA version.
Install CUDA:
Run the CUDA installer and choose Express Installation.
After installation, verify by running:
Type this code:nvcc --version
Step 5: Install cuDNNDownload cuDNN:
Visit the NVIDIA cuDNN Page.
Log in or create a free account.
Download the cuDNN version matching your CUDA version.
Install cuDNN:
Extract the cuDNN ZIP file.
Copy the contents of bin, include, and lib folders into your CUDA installation directory, usually:makefileC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.x
Step 6: Configure Environment VariablesAdd CUDA Paths to Environment Variables:
Search for Environment Variables in the Windows search bar.
Under System Variables, edit the Path variable:
Add:makefileC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.x\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.x\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.x\include
Restart Your PC:
Restart to apply the changes.
Step 7: Verify TensorFlow GPU SetupTest GPU in TensorFlow:
Run the following Python script to verify GPU is being used:import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
If the GPU is detected, TensorFlow is ready to us